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Abstract

In this paper, we study the impact of aggregate variables on individual
outcome in linear panel models with �xed e¤ects. Individuals are mobile
and can change aggregate group at each period. We show how a two-
stage estimation method can properly account for aggregate unobserved
heterogeneity to avoid biases on standard errors. The method can deal
with individual and aggregate heteroskedasticity and/or autocorrelation.
It is also �exible enough to allow for instrumentation of both individual
and aggregate variables. Using Monte-Carlo simulations, we study the
properties of the estimators for di¤erent mobility patterns of individuals
between aggregate groups.
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1 Introduction

In many economic �elds, researchers are interested in the measure of some group
e¤ects on an individual outcome. The related issues encompass the e¤ect of in-
dustry structure on the individual wage in labour economics (Krueger and Sum-
mers, 1988; Gibbons and Katz, 1992; Abowd, Kramarz and Margolis, 1999); the
impact of density and human externalities on the local productivity of work-
ers in economic geography (Glaeser and al., 1992; Rauch, 1993; Ciccone and
Hall, 1996; Ciccone, 2002; Combes, Duranton and Gobillon, 2003); the e¤ect of
local school characteristics on the market price of households�dwellings in ur-
ban economics (Gibbons and Machin, 2003); the consequences of local weather
conditions on farmers�income in development economics (Gurgand, 2003).
As a consequence, econometric methods have been developped to estimate

the e¤ect of aggregate variables on an individual outcome when using linear
cross-section models (see Goldstein, 1995; Wooldridge, 2002 and 2003). In this
paper, we extend previous work to linear panel models including individual �xed
e¤ects. We focus on cases where individuals are mobile and can change group
across time.1 The group choice process of individuals is supposed to be strictly
exogenous.
It is well-known from cross-section analysis that aggregate heterogeneity

should be taken into account to avoid some potentially large biases on standard
errors. For that purpose, many papers introduce iid aggregate random terms
in their econometric speci�cation and conduct a feasible general least square
estimation (see for instance: Moulton, 1990; Pepper, 2002).2 However, such an
approach becomes unfeasible when using a panel model with �xed e¤ects where
individuals are mobile. Indeed, �xed e¤ects should be di¤erenced out and the
structure of the covariance matrix becomes very complex as individuals move
between groups.
A less widespread cross-section approach consists in estimating the model

in the within-group dimension. This allows to recover some estimates of the
coe¢ cients of individual variables. The group-mean of residuals is then regressed
on the aggregate variables to recover some estimates of group coe¢ cients (see
for instance: Hausman and Taylor, 1981; Donald and Lang, 2001). When the
uncertainty on the dependent variable is properly accounted for in this group-
mean regression, it is possible to compute some unbiased standard errors for
the estimated coe¢ cients of aggregate variables. The procedure is equivalent
to estimating group �xed e¤ects in a �rst stage, and regressing them on the
aggregate variables in second stage.
This two-stage method can be extended to panel models with individual

�xed e¤ects: in �rst stage, all aggregate terms are replaced by group-year �xed
e¤ects in the outcome equation. Thus, the individual outcome is explained by

1The case where individuals are immobile is addressed brie�y in section 3. We also give
some more information on models where individual unobserved e¤ects are random (and not
�xed) in sections 3.

2A closely related approach is the iterated generalized least square estimator proposed by
Goldstein (1986).
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the individual explanatory variables, some individual �xed e¤ects, some group-
year �xed e¤ects and some individual error terms. It is evaluated after individual
�xed e¤ects have been di¤erenced out. The estimated group-year �xed e¤ects
are then regressed in second stage on the aggregate variables.
We explain how to construct an unbiased and consistent estimator of the

variance of aggregate error terms. In particular, this estimator is the root mean
square of second-stage residuals corrected to account for the uncertainty on the
dependent variable. It is used to compute unbiased and consistent standard
errors for the estimated coe¢ cients of group variables. As a by-product, a
feasible general least square estimation in second stage can also be performed.
We then present some extensions of the method that allow to account for het-

eroskedasticity and/or autocorrelation of individual and aggregate errors terms.
We also explain how robust standard errors can be recovered when individual
and aggregate variables are instrumented. We then discuss which properties of
the estimators still hold if the exogeneity assumption made for the group choice
process of individuals is relaxed.
The accuracy of all the estimators proposed in this paper depends on the

group mobility pattern of individuals across time. We analyse two simple cases
for which this mobility pattern di¤ers. In the �rst case, some individuals depart
from each group and go to all other groups between two dates. In the second
case, all movers from group g go to group g + 1, except those in the last group
that move to the �rst group. We show that the estimated group-year �xed
e¤ects are measured on average with far more accuracy in the �rst case than in
the second case when the number of groups is high.
We �nally conduct some Monte-Carlo simulations to study more complex

cases. Results suggest that the two-stage method allows to avoid a bias on stan-
dard errors that can be higher than 200% as in Moulton (1990). The estimator
of the variance of aggregate error terms is accurate as long as groups are well
interconnected across time by �ows of movers. The corrective term accounting
for the uncertainty on the second-stage dependent variable can easily represent
more than 25% of the estimated variance. Lastly, the coe¢ cient estimates ob-
tained in two stages are as accurate as those obtained by a direct estimation of
the model except when groups are badly interconnected.
The rest of the paper is as follows. We introduce the model in section 2.

We present the estimation method in section 3. We give some properties of the
estimators in section 4. We discuss some extensions and limits of the estimation
method in section 5. We study the e¤ect of the group mobility pattern on the
accuracy of the estimators for two simple examples in section 6. We report
some Monte Carlo simulation results for more complex con�gurations in section
7. Finally, section 8 concludes.
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2 The model

The two-stage method is presented for balanced panel data but the extension
to the unbalanced case is straightforward. We consider a model of the form:

yi;t = xi;t�+ zg(i;t);t
 + �g(i;t);t + ui + "i;t

for i = 1; :::; N and t = 1; :::; T . In this equation, xi;t is a 1 � L vector of
individual time-varying characteristics, ui an individual �xed e¤ects, and "i;t
an individual error term. We denote g (i; t) the group to which the individual
i belongs at time t. For g = 1; :::; G, zg;t is a 1 � K vector of group-year
characteristics including the scalar one, and �g;t is a group error term.

For an individual variable si;t, we denote S the stacked vector of the observa-
tions in the individual and time dimensions. Similarly, for an aggegate variable
qg;t, we denote Q the stacked vector in the group and time dimensions. The
model in vector form is:

Y = X�+ FZ
 + F� +AU + " (1)

where F is the matrix associating to each individual her group at a given date,
and A is the (non stochastic) matrix associating to each individual her �xed
e¤ect.

We introduce the following assumptions on error terms:

A1: "i;t i.i.d., E ("i;t j�) = 0, E
�
"2i;t j�

�
= �2 <1, E

�
"4i;t j�

�
= R <1

A2: �g;t i.i.d., E
�
�g;t jZ

�
= 0, E

�
�2g;t jZ

�
= �2 <1, E

�
�4g;t jZ

�
= Q <1

A3: E (" j�;�) = 0

where � = fX;F;Zg.

In particular, Assumptions A1 and A2 do not allow for endogeneity of some
explanatory variables. They also rule out heteroskedasticity and autocorrelation
of both individual and aggregate error terms. Finally, Assumption A3 imposes
that individual and group error terms are uncorrelated. All these issues are
discussed in more details in Section 4.

An intuitive approach to estimate equation (1) is to compute the �rst-
di¤erence estimator or the within estimator because they allow to deal with
individual �xed e¤ects properly. However, the covariance matrix of the residu-
als rewritten in �rst-di¤erence or in mean-di¤erence is very complex as there
exist some group error terms and some mobility of individuals between groups
across time. As a consequence, the variance of group error terms and the stan-
dard errors of estimated coe¢ cients cannot be computed.
It could be tempting to omit group error terms when estimating the model

even if the standard errors of parameters are biased. This can lead in practice to

4



an important underestimation of standard errors (see Moulton, 1990; Pepper,
2002). Hence, group error terms must be taken into account. We show that a
two-stage method can deal with this issue.
The basic idea is to replace all aggregate terms in model (1) by group-year

�xed e¤ects. The resulting equation is estimated after individual �xed e¤ects
have been eliminated by mean-di¤erence. This �rst-stage regression allows to
recover some coe¢ cient estimates for individual variables as well as their stan-
dard errors. The estimated group-year �xed e¤ects are then regressed on group
variables. This second regression provides some coe¢ cient estimates for group
variables. We show in next sections that it is possible to compute some unbiased
and consistent estimates of their standard errors.

3 The estimation method

More formally, we specify a group-year �xed e¤ect �a;t as the sum of all aggre-
gate terms. This group-year �xed e¤ect is then introduced in equation (1). The
model rewrites in vector form:

Y = X�+ F� +AU + " (2)

� = Z
 + � (3)

If all groups are properly interconnected by in�ows or out�ows of movers across
time, the group year �xed-e¤ects � are identi�ed if one identifying restriction
only is imposed to the model (see Abowd, Kramarz and Margolis, 1999; Combes,
Duranton and Gobillon, 2003). We suppose that this property holds in the
sequel and we impose �1;1 = 0. We explain in Appendix A how to adapt the
analysis when there is no mobility or groups are not well interconnected by �ows
of movers.

The two-stage method can be described as follows (the properties of the esti-
mators are detailed in the next subsection):

1. We �rst compute the within-individual estimator of the parameters in the

�rst stage equation. We denote b� = BY withB = �0; FMH (F
0MHF )

�1
�0
,

the estimator of the group-year �xed e¤ects (b�1;1 being �xed to zero for
convenience), where H = (X;A) and MH = I �H (H 0H)

�1
H 0.

2. Introducing 	 =
�
0;
�b� � ��0�0 the uncertainty on the group-year �xed

e¤ects, the second-stage equation rewrites: b� = Z
 + � + 	. We denoteb
OLS the OLS estimator of 
 derived from this equation.

3. It is then possible, under some assumptions (see next section), to compute
an unbiased and consistent estimator of the variance of group error terms:

b�2 = 1

GT �K

��
\� +	

�0 �
\� +	

�
� tr

h
MZ

bV (b� j�)i� (4)
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whereMZ = I�Z (Z 0Z)�1 Z 0,\� +	 = b��Zb
 =MZ(�+	), and bV (b� j�)
is the estimator of the covariance matrix of group-year �xed e¤ects derived
from the �rst stage bordered with a �rst line and a �rst column of zeros.

4. We then obtain an unbiased estimator of the covariance matrix


 = V (� +	 j�): b
 = b�2I + bV (b� j�) (5)

5. It can be used to compute an unbiased estimator of the covariance matrix
of b
OLS :3 bV (b
OLS j�) = (Z 0Z)�1Z 0b
Z (Z 0Z)�1 (6)

6. It is also possible to construct the second-stage general least square esti-
mator of 
: b
GLS = �Z 0
�1Z��1 Z 0
�1b� (7)

Its conditional variance is given by:

V (b
GLS j�) = �Z 0
�1Z��1 (8)

7. A feasible general least square estimator b
FGLS is obtained replacing 

by b
 in equation (7).

It is easy to compute the estimator b�2 since this requires only the covariance
matrix of parameters obtained in �rst stage, the second-stage residuals, and the
projector in the dimension orthogonal to group variables.
Note that the two-stage estimation method can be implemented when individual
e¤ects are random (see Appendix A).

Compared to a direct �rst-di¤erence or within estimation, the two-stage
method has two advantages. First, it is possible to take into account the aggre-
gate random terms properly when computing standard errors. Second, it allows
to conduct a variance analysis at the aggregate level using the second-stage
equation. However, it cannot be applied when the number of groups is large as
when studying the impact of �rms �xed e¤ects on individual wages (see Abowd,
Kramarz and Margolis, 1999). Indeed, it cannot deal with too many group-year
�xed e¤ects in the �rst stage. More details on the properties of the estimators
are given in the next section

3Strictly speaking, the formula is true for all coe¢ cients but the constant that is derived
from the normalization of �1;1 to zero for each sample drawn (and is thus random). This issue
is ignored in all formulas for readability. The constant is not identi�ed anyway without any
restrictions to the model.
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4 Some properties of the estimators

In this section, we give some su¢ cient conditions for some second-stage estima-
tors to be unbiased and consistent when N and G go to in�nity simultaneously
(T �xed). We also derive the asymptotic distribution of the estimated coe¢ -
cients of group explanatory variables. All properties are given for stochastic
regressors. The non-stochastic case is similar. We �rst focus on the estimator
of the variance of group error terms and show its unbiasedness:

Property 1 Under A2-A3, b�2 is an unbiased estimator of �2.
Proof: see Appendix B. �

We now give some su¢ cient conditions on the mobility pattern of individuals
between groups for the estimated variance of group error terms to be consistent.
First, we consider that there exists a rule that links N to G, when G tends to
in�nity. This rule is supposed to verify the following assumption:

A4: there exists a strictly increasing function f (�) such that 8G > 0, N = f (G)
with G

f(G) !
G!+1

0.

This condition ensures that the number of regressors in the �rst-stage equa-
tion becomes negligible compared to the sample size when the number of groups
and individuals tend to in�nity. It also reduces the convergence problem to a
one-dimension issue. In the sequel, we consider that the condition is veri�ed
but do not replace N by f (G) for a better readability. The key assumption for
convergence, which ensures that the estimators of group-year �xed e¤ects are
estimated with enough accuracy when N and G tend to in�nity, is then:

A5: 1
GT E

h
tr (F 0MHF )

�1
i

!
G!+1

0 and E
h
1
GT tr (F

0MHF )
�1
i2

!
G!+1

0.

The second asymptotic condition in A5 is technical and has to be made
because regressors are stochastic. When the regressors are non stochastic, the
two asymptotic conditions collapse into one only. It is straightforward to show
that assumption A5 is equivalent to:

1

GT
EtrV

�b� j�� !
G!+1

0; E
�
1

GT
trV

�b� j���2 !
G!+1

0 (9)

This suggests an empirical diagnosis for assumption A5 to be approached by
the data at �nite distance when N and G are large. Indeed, estimates are
in line with this assumption if the average variance of group-year �xed e¤ects
given by the within estimation of equation (2) is small. This is very intuitive
since it means that on average the uncertainty on the second-stage dependent
variable is small. Interestingly, even if the variance of some group-year �xed
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e¤ects tends to in�nity because all the groups are not well interconnected to the
others, assumption A5 may still hold. We then prove the following consistency
property:

Property 2 Under assumptions A1-A5, we have: b�2 P!
G!+1

�2 (T �xed).

Proof: see Appendix B. �

We now turn to the properties of the estimated coe¢ cients of the group
explanatory variables. First note that, using the expression of b� as well as
equations (2) and (3), we can write:

b
OLS = 
 + (Z 0Z)�1 Z 0� + (Z 0Z)�1 Z 0B" (10)

Thus, the OLS estimator of 
 can be decomposed into the real parameter value,
a component due to the use of a �nite sample of groups, and a component that
accounts for the uncertainty on the dependent variable. A similar decomposition
holds for the GLS estimator that writes:

b
GLS = 
 + �Z 0
�1Z��1 Z 0
�1� + �Z 0
�1Z��1 Z 0
�1B" (11)

Property 3 Under A1-A2, b
OLS and b
GLS are unbiased estimators of 
.
Proof: It is straightforward using equations (10) and (11). �

The property of unbiasedness does not hold for the FGLS estimator as usual
in the literature because the estimated variance b
 enters the formula and is
correlated with error terms. We now turn to asymptotic properties. To a given
matrix v, associate jvj the matrix where all terms of v are taken in absolute
value. We need some further assumptions to prove the consistency of b
OLS ,b
GLS and b
FGLS :
A6a: Z0Z

GT

P!
G!+1

Q0 is �nite and de�nite positive; there exists �1 such that all

the elements of jZj are inferior to �1 for all G; 1
GT trE

h
(F 0MHF )

�1
i

!
G!+1

0.

A6b: Z0
�1Z
GT

P!
G!+1

Q2 is �nite and de�nite positive; there exists �2 such that

all the elements of jZj are inferior to �2 for all G; 1
GT trE

�

�1

�
!

G!+1
0.

A6c: Z0b
�1Z
GT

P!
G!+1

Q3 is �nite and de�nite positive; there exists �3 such that

all the elements of jZj are inferior to �3 for all G; 1
GT trE

�b
�1� !
G!+1

0.

In particular, these assumptions ensure that the uncertainty on the second-
stage dependent variable becomes negligible in the expressions of the estimators
of 
 when G tends to in�nity. It is then possible to apply a Chebychev�s weak
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law of large numbers for triangular arrays (see Borovkov, 1998) to prove the
consistency of the estimators. We have the following property:

Property 4 Suppose that A1,A2,A4 are veri�ed. We have:
Under A6a, b
OLS P!

G!+1

. Under A6b, b
GLS P!

G!+1

.

Under A6c, b
FGLS P!
G!+1


.

Proof: see Appendix B. �

We now determine the limit distribution of b
OLS , b
GLS and b
FGLS . Recall that
B =

�
0; FMH (F

0MHF )
�1
�0
. Introduce ` a GT � 1 vector of ones. We need

the following assumptions:

A7a: There exists �1 such that all the elements of `0: jBj are bounded by �1 for
all G. 1

GT Z
0 (F 0MHF )

�1
Z

P!
G!+1

Q1 is �nite and de�nite positive.

A7b: There exists �2 such that all the elements of `0:
��
�1B�� are bounded by �2

for all G.

A7c: There exists �3 such that all the elements of `0:
���b
�1B��� are bounded by �3

for all G.

According to equation (10), the second stage OLS, GLS and FGLS estima-
tors can be rewritten as a linear combination of the group and individual error
terms. Assumptions A7a-A7c ensure that the contribution of every individual
error term to the second-stage estimators is negligible when G tends to in�nity.
It is then possible to apply a central limit theorem for triangular arrays in the
multivariate case (see Borovkov, 1998). We have:

Property 5 Under A1-A4 , A6a and A7a:
p
GT (b
OLS � 
) L!

G�!+1
N
�
0; �2Q�10 + �2Q�10 Q1Q

�1
0

�
(12)

Under A1-A4, A6b and A7b:

p
GT (b
GLS � 
) L!

G�!+1
N
�
0; Q�12

�
(13)

Under assumptions A1-A4, A6c and A7c:

p
GT (b
FGLS � 
) L!

G�!+1
N
�
0; Q�13

�
(14)

Proof: see Appendix. �

When stated in the case of non-stochastic regressors, Property 5 provides a
means to conduct tests conditionally to the data.
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5 Extensions and limits

In this section, we discuss some extensions of the two-stage method. We explain
how heteroskedasticity and/or autocorrelation of individual and/or group er-
ror terms can be taken into account when computing the estimators and their
standard errors. We also show how the method can be extended if one wants
to instrument some individual or group variables because they are potentially
endogenous. We then present some limits of the two-stage method. We study
the unbiasedness properties of some estimators when the allocation process of
individuals between groups is no longer exogenous (the equality E ("; � jF ) = 0
coming from Assumptions A1 and A2 no longer holds). We also examine these
unbiasedness properties when a correlation between the individual and group er-
ror terms is allowed (Assumption A3 : E (" j�;�) = 0 is not imposed anymore).
We compare the results with those obtained when the model is estimated di-
rectly in one stage only.

5.1 Heteroskedasticity and autocorrelation

In some cases, heteroskedasticity and/or autocorrelation of individual and/or
group error terms should be accounted for to avoid some bias on the estimated
standard errors. This issue, ignored for a long time in the empirical litera-
ture, has been explicitely recognized more recently. For instance, it has been
shown that ignoring heteroskedasticity and autocorrelation of individual error
terms can lead to highly biased standard errors when studying policies targeted
on some subgroups of the population (see Bertrand, Du�o and Mullainathan,
2004). It is possible to extend the two-stage method to compute standard er-
rors robust to heteroskedasticity and/or autocorrelation of individual and/or
group error terms. Indeed, heteroskedasticity and/or autocorrelation of individ-
ual error terms can be taken into account in the �rst stage regression, whereas
heteroskedasticity and/or autocorrelation of group error terms can be dealt with
in the second-stage regression.

More formally, rewrite the equation (2) with vectors at the individual level:

Yi = Xi�+ Fi� + ui`T + "i (15)

where Yi = (yi;1; :::; yi;T )
0, Xi =

�
x0i;1; :::; x

0
i;T

�0
, `T = (1; :::; 1)

0, Fi is the T�GT
matrix associating to individual i her group in all years, and "i = ("i;1; :::; "i;T )

0.
For a given variable v, denote ev its projection in the within dimension. Consider
the four cases: (0) homoskedasticity and no autocorrelation; (1) heteroskedas-
ticity (across individuals but not time) and no autocorrelation; (2) homoskedas-
ticity and autocorrelation; (3) heteroskedasticity (across individuals and time)
and autocorrelation. The conditional covariance matrix of coe¢ cients estimated

in �rst stage writes
� eH 0 eH��1 �� eH 0 eH��1, where H = (X;F ) and � is a matrix
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depending on the case that is considered:

(0) � = �2 eH 0 eH
(1) � =

X
i

�2i eH 0
i
eHi

(2) � =
X
i

eH 0
i�
eHi

(3) � =
X
i

eH 0
i�i eHi

where Hi = (Xi; Fi), �2i is the variance of the individual shock for i in case (1);
� is the covariance matrix of individual shocks common to all i in case (2); and
�i is the covariance matrix of individual shocks for i in case (3).

In each case, supposing that G is �xed, an estimator of 1
NT � consistent

when N tends to in�nity can easily be constructed using the estimated shocksbe"i = �be"i;1; :::;be"i;T�0 from the within regression (see Kezdi, 2002). In case (0), �2

should be replaced by 1
N(T�1)

be"0be". In case (1), each term �2i should be replaced

by 1
T�1

be"0ibe"i (this is a slight modi�cation of White, 1980). In case (2), � should
be replaced by 1

N

P
i

be"ibe"0i (see Kiefer, 1980). In case (3), �i should be replaced
by be"ibe"0i (see Arellano, 1987).4
If there is no heteroskedasticity and no autocorrelation for group error terms,

the two-stage estimation method proposed in section 2 can be applied directly
without any change in the formulas, except for the covariance matrix of the
estimated group-year �xed e¤ects. The unbiasedness property of b�2 still holds.
Provided that assumptions A5 to A7 are modi�ed, this is also the case for the
consistency and distribution properties.

If there is heteroskedasticity and/or autocorrelation of group error terms, it
is possible to construct robust estimators of the second-stage standard errors
(whether individual error terms are heteroskedastic and/or autocorrelated or
not). The approach is quite similar to that used in �rst stage except that there
is some uncertainty with known variance on the dependent variable that must be
taken into account. Consider the following four cases characterizing the group
error terms: (0) homoskedasticity and no autocorrelation; (1) heteroskedastic-
ity (across groups but not time) and no autocorrelation; (1�) heteroskedastic-
ity (across groups and time) and no autocorrelation; (2) homoskedasticity and
autocorrelation; (3) heteroskedasticity (across groups and time) and autocor-
relation. The conditional covariance matrix of the second-stage OLS estimator

4Tests for heteroskedasticity and autocorrelation are given by Kezdi (2002); Inoue and
Solon (2004).
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writes V (b
OLS j�) = (Z 0Z)
�1
h
Z 0V

�b� j��Z +�i (Z 0Z)�1 where � is a ma-

trix depending on the case:

(0) � = �2Z 0Z

(1) � =
X
g

�2gZ
0
gZg

(10) � =
X
g;t

�2g;tZ
0
g;tZg;t

(2) � =
X
g

Z 0g�Zg

(3) � =
X
g

Z
0

g�gZg

with �2g the variance of group shocks for g in case (1); �
2
g;t the variance of

group shock for g in year t in case (1�); � the covariance matrix of group shocks
common to all g in case (2); and �g the covariance matrix of group shocks for
g in case (3).5

In each case, an estimator of 1
GT � consistent when N and G tend to in�nity

simultaneously can easily be constructed using the estimated individual shocks
\� +	g from the OLS regression where \� +	g =

�
\� +	g;1; :::;\� +	g;T

�0
. In

case (0), it is possible to construct an estimator of �2 that is not only consistent,
but also unbiased (see Section 4). In case (1), each term �2g should be replaced

by
h
1
T
\� +	

0
g
\� +	g � trV

�b�g j��i where b�g = �b�g;1; :::; b�g;T�0. In case (1�),
each term �2g;t should be replaced by

h
\� +	

2

g;t � V
�b�g;t j��i. In case (2), �

should be replaced by 1
G

P
g

h
\� +	g\� +	

0
g � V

�b�g j��i. In case (3), �g should
be replaced by

h
\� +	g\� +	

0
g � V

�b�g j��i.
We have shown how to deal with heteroskedasticity and/or autocorrelation

of group error terms. Researchers may also want to take into account spatial
autocorrelation if groups are de�ned as countries or regions. This can be done in
two di¤erent ways.6 First, it is possible to introduce some group �xed e¤ects in

5The conditional covariance matrix of the second-stage GLS estimator writes:

V (b
GLS j�) = �Z0 hV �b� j��+�0i�1 Z��1 where �0 is a matrix that depends on the case:
(0) �0 = �2I; (1) �0 = diag

�
�21IT ; :::; �

2
GIT

�
where IT is the T � T identity matrix; (1�)

�0 = diag
�
�21;1; :::; �

2
G;T

�
; (2) �0 = diag (�; :::;�); (3) �0 = diag (�1; :::;�G). An estimator

of the conditional covariance matrix can be constructed replacing unknown quantities by their
empirical counterpart computed from OLS (see next paragraph in the main text).

6See Case (1991) for a discussion on the advantages and drawbacks of the two approaches.
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equation (3). Coe¢ cients of aggregate variables can be estimated after project-
ing this equation in the within-group dimension.7 Second, if T is quite large,
G is small, and one believes that there is no time autocorrelation, it is possible
to compute consistent standard errors with a method in the same spirit as the
approach used above for cases (2) and (3). Indeed, consider the cases: (2b)
homoskedasticity and spatial autocorrelation; (3b) heteroskedasticity (across
groups and time) and spatial autocorrelation. The � matrix shoud rewrite in
the two cases:

(2b) � =
X
t

Z 0t�Zt

(3b) � =
X
t

Zt�tZt

where Zt = (Z1;t; :::; ZG;t)
0, � is the covariance matrix common to all years in

case (2b), �t is the covariance matrix for year t in case (3b).
Both approaches allow to take spatial autocorrelation into account without es-
timating the coe¢ cients of a spatial underlying process as it is often done in the
literature (See Cressie, 1993; Anselin and Florax, 2002).

5.2 Endogeneity issues

There are several types of endogeneity problems that can arise:

1) Some individual explanatory variables are correlated with group error terms.
2) Some individual explanatory variables are correlated with individual error
terms.
3) Some group explanatory variables are correlated with group error terms.
4) The group choice of individuals is correlated with group error terms.
5) The group choice of individuals is correlated with individual error terms.

We �rst discuss the endogeneity problems 1), 2), and 3). The discussion ap-
plies even if there exists heteroskedasticity and/or autocorrelation of individual
and/or group error terms.
The estimated parameters are robust to the �rst endogeneity issue. Indeed, all
terms at the group level are replaced by group-year �xed e¤ects that are es-
timated jointly with the coe¢ cients of individual explanatory variables. Thus,
even if group error terms are correlated with some individual explanatory vari-
ables, it is not the case of the residuals in the �rst stage regression. Note that
if the model was estimated directly in one stage only, the estimated parameters
would be biased as the group error terms would enter the �rst-stage residuals.
The second endogeneity issue can be handled if there exist some instruments
for the individual variables. In that case, the �rst-stage estimation becomes

7Note that it is still possible to take into account heteroskedasticity and/or autocorrelation
of group error terms when group �xed e¤ects are introduced in equation (3). This can be done
using the same kind of formulas as in �rst stage when heteroskedasticity and/or autocorrelation
of individual error terms are accounted for in presence of individual �xed e¤ects.
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a standard 2SLS estimation for panel data. The second stage of the method
remains nearly unchanged: formulas are the same except that the variance of
group-year �xed e¤ects now includes an additional component coming from
instrumentation in �rst stage.
The third endogeneity issue can be tackled in second stage if there exist some
instruments for group variables. In that case, equation (3) is estimated with
2SLS. It is still possible to use the formulas given in sections 2 and 3 to recover
some consistent estimators of standard errors, except that an additional variance
coming from instrumentation must be added to the variance of group-year �xed
e¤ects.8

The fourth and �fth endogeneity issues are discussed below in a more struc-
tural way, specifying the group-choice process of individuals. We do not try to
take into account the group choice process in the estimations. Indeed, methods
have been proposed for that purpose in cross-section9 , but they cannot be easily
extended to panel models with individual �xed e¤ects. Instead, we discuss the
biases that can arise for the estimated coe¢ cients. For simplicity, we consider
that assumptions A1-A3 are veri�ed.
We consider now that the choice of individuals between groups is made on the
basis of the expected outcome associated to each group conditional on the error
terms which are observed. Denote yi;g;t the outcome that an individual could
obtain if she was in group g in year t. It is supposed to verify the equation:

yi;g;t = xi;t�+ zg;t
 + �g;t + ui + �i;g;t

where �i;g;t is an individual-group error term. The individual error term intro-
duced in equation (1) veri�es "i;t = �i;g(i;t);t. We examine which estimates are
biased depending on the group choice process:

1. The individuals do not observe any error term. We have:

g (i; t) = argmax
g

E�i;g;t;�g;t (yi;g;t)

Then, F is strictly exogenous. This case is in line with Assumptions A1
and A2.

2. The individuals observe the group error terms but not the individual-group
error terms. We then have:

g (i; t) = argmax
g

E�i;g;t (yi;g;t)

8For more on the endogeneity issues 1), 2) and 3), but in a cross-section setting, see Blundell
and Windmeijer (1997); Rice, Andrew and Glodstein (2002).

9See Lee (1983); Durbin and Mc Fadden (1984); Dahl (2002); Bourginon, Fournier and
Gurgand (2003).
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The group choice of individuals then depends on the group error terms
only and F = F (�). When model (1) is estimated directly, the coef-
�cients of all explanatory variables are biased because the group error
term enters the random component. Interestingly, when the �rst stage of
the method is performed, the estimated group-year �xed e¤ects and the
estimated coe¢ cients of individual explanatory variables are not biased.
Indeed, the random component in equation (2) only consists in the indi-
vidual error term that is supposed to be uncorrelated with the group error
term (see A3 ). Also, the coe¢ cients of group variables obtained in second
stage with OLS and GLS are unbiased. This arises because the group
error terms enter additively with all the terms including F in the expres-
sion of the second-stage estimators (see formulas (10) and (11)). Finally,
whereas the estimated variance of individual error terms is unbiased, the
estimated variance of group error terms given by (4) is biased because of
some multiplicative interactions between F and the group error terms. As
a consequence, the estimated standard errors in second stage are biased.

3. The individuals observe the individual-group error term but not the group
error terms. In that case, we have:

g (i; t) = argmax
g

E�g;t (yi;g;t)

The group choice of individuals then depends on the individual error terms
only and F = F (").10 When model (1) is estimated directly, FZ enters
the set of explanatory variables and is correlated with the random com-
ponent " + �. Consequently, the estimated coe¢ cients of all explanatory
variables are biased. In the two-stage method, F also enters the set of
explanatory variables in �rst stage and the random component is ". Thus,
the estimated group-year �xed e¤ects and the estimated coe¢ cients of in-
dividual explanatory variables are biased. Moreover, the uncertainty on
the second-stage dependent variable is a multiplicative function of F and
". As a consequence, the estimated coe¢ cients of group variables are bi-
ased. Finally, the estimated variance of group error terms is biased as "
and F interact multiplicatively in its formula.

4. The individuals observe all individual-group error terms as well as all
group error terms. In that case, we have:

g (i; t) = argmax
g

(yi;g;t)

The group choice of individuals then depends on both types of error terms
and F = F ("; �). The results given in the previous case also hold here.

Results on biases are summarized in Table 1:
10 It also depends on the �i;g;t, g 6= g (i; t). However, these individual-group error terms are

omitted from the function F (�) for readability.
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Table 1: bias on parameters depending on the mobility process

DWγ̂ OLSγ̂ GLSγ̂ FGLSγ̂ 2σ̂ 2κ̂
Case 1:
All error terms
unobserved

+
(­)

+
(+)

+
(+)

­*
­*

+ +

Case 2:
Group error terms
observed

­
(­)

+
(­)

+
(­)

­*
(­)

+ +

Case 3:
Individual error
terms observed

­
(­)

­
(­)

­
(­)

­
(­)

­ ­

Case 4:
All error terms
Observed

­
(­)

­
(­)

­
(­)

­
(­)

­ ­

+: unbiased, ­: biased, * (for FGLS): biased only because the variance of group error terms has been replaced by
its estimator. The sign without parenthesis refers to the estimator. The sign in parenthesis refers to its variance.
The  direct within  estimator  of  model  (1)  in  one  stage  only  is  noted DWγ̂ .  Its  variance  is  computed  without
accounting for group error terms. Thus, it is always biased.

5.3 Correlation between error terms

For cases 1) and 2), it is interesting to study how a correlation between individual
and group error terms can change the results on biases. When these error terms
are correlated, the group-year �xed e¤ects and the estimated coe¢ cients of in-
dividual explanatory variables obtained with the two-stage method are biased.
This occurs because there is some sorting of individuals across groups according
to the value of group-year �xed e¤ects. Put di¤erently, the expectation of indi-
vidual error terms conditional on the group-year �xed e¤ects is not zero. More

formally, we have: E
�b������ � � = EF;H h(F 0MHF )

�1
F 0MHE ("jF;H; �)

i
.11

As cov ("; �jF;H) = cov ("; �jF;H) 6= 0 because E ("j �) 6= 0, we have
E ("jF;H; �) 6= 0, and thus E

�b������ 6= 0. The same line of argument applies
to show that the estimated coe¢ cients of individual explanatory variables are
biased. In comparison, model (1) is estimated directly, the existence of a bias
on the estimated coe¢ cients of individual explanatory variables depends on the
assumption made on the group-choice process. If the process if strictly exoge-
nous (case 1), these estimated coe¢ cients are unbiased because the group error
terms enter the residuals. However, if the group-choice process depends on the
aggregate error terms (case 2), the estimated coe¢ cients of individual variables
are biased since FZ enters the set of explanatory variables.
Interestingly, the existence of a bias on the estimated coe¢ cients of group

explanatory variables obtained with the two-stage method depends on the as-

11All formulas given in other sections are also conditional on parameters even if it is not
stated for notations to remain simple. In particular, the �rst-stage estimation is conducted
conditionally on group-year �xed e¤ects. We introduce some expectations conditional on pa-
rameters in this subsection because we need the conditionality to be explicit in the discussion.
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sumptions made on the group-choice process. If F is strictly exogenous, the
estimated coe¢ cients are unbiased as we have:
E (b
OLS)�
 = EZ;F;H h(Z 0Z)�1 Z 0 (F 0MHF )

�1
F 0MHE ("jF )

i
and E ("jF ) =

0. When F = F (�), they are biased since E ("jF ) 6= 0. The same results hold
when the model is estimated directly in one stage only. This can be shown using
the same line of arguments as previously for individual explanatory variables.

6 Some analytical examples

In this section, we try to assess how the level of interconnection between groups
can a¤ect the consistency results for the estimated variance of group error terms.
For that purpose, we study two particular cases characterized by di¤erent mo-
bility patterns of individuals. The two cases are designed so that it is possible
to compute a closed form for the estimators of group-year �xed e¤ects. We de-
rive from their expression, the speed at which N and G must increase relatively
to each other for the assumption A5 to be satis�ed. All proofs are given in
Appendix C.
For simplicity, we consider that there is no individual explanatory variable. We
also suppose that all groups include the same number of individuals at each
date: n = N=G (with N proportional to G), and that T = 2.

1. In the �rst case, for each group g, m
G�1 individuals move to each other

group g0 6= g (m is supposed to be proportional to G� 1) and n�m stay
in their group. In this con�guration, the �rst-order conditions write:

n�g;2 � (n�m)�g;1 �
m

G� 1
X
z 6=g
�z;1 = wg;2

n�g;1 � (n�m)�g;2 �
m

G� 1
X
z 6=g
�z;2 = wg;1

for all g = 1; :::; G and t = 1; 2, with t0 = 3�t and wg;t =
P

ijg(i;t)=g
(yi;t � yi;t0).

Using the identifying condition �1;1 = 0, we obtain:

b�g;1 =
1

n

�

2� � 1 [� (wg;1 � w1;1) + (� � 1) (wg;2 � w1;2)]b�g;2 = wg + (n�m) b�g;1 + m

G� 1
X
z 6=g

b�z;1
with � = G�1

G
n
m .

We can �rst notice that estimated group-year �xed e¤ects are the same
for all groups in each year. This is not surprising since the position of
all groups relatively to the reference group (g = 1) is similar. We can
study how the variance of estimated group �xed e¤ects in each year varies

17



depending on the number of movers. For G > 3, this variance is minimum
in each year when all individuals move from their group (m = n). As soon
as the number of movers is proportional to the number of individuals per
group (i.e. m = �n with � > 0 for all G), we have:

1

GT
trV

�b�� = 4 + 2�2 (1� �)
�2 (2� �) �2

G

N
+ o

�
G

N

�
The number of individuals must converge at a rate at least equal to G1+�,
� > 0, for Assumption A5 to hold.

2. In the second case, for each group g, m individuals move to group g + 1
(except when g = G, in which case they move to group g = 1) and
n�m individuals stay in their group. In this con�guration, the �rst-order
conditions write:

n�g;2 �m�g�1;1 � (n�m)�g;1 = wg;2

n�g;1 �m�g+1;2 � (n�m)�g;2 = wg;1

Using the identifying restriction �1;1 = 0, we obtain:

b�g;1 =
1

G

g�1X
b=1

(b� 1) (G� g + 1)wb;1 +
1

G

GX
b=g

(g � 1) (G� b+ 1)wb;1

b�g;2 =
1

n

h
wg;2 +mb�g�1;1 + (n�m) b�g;1i

with wb;1 = 1
n�1 [nwb;1 +mwb+1;2 + (n�m)wb;2].

In that case, the value of each estimated group �xed e¤ect depends on
the position of the group-year relative to the reference group 1. This is
also the case for the variance of each estimated group-year �xed e¤ect. In
fact, the maximum variance in year 1 corresponds to the group g = G

2 +1
(for G even). This is not surprising as the corresponding group is the
furthest away from the reference group 1. We study how the variance
of each estimated group �xed e¤ect in year 1 varies depending on the
number of movers. We �nd that each variance is minimum when half
the individuals move to the next group. To derive some simple su¢ cient
conditions for Assumption A5 to be veri�ed, we write that the number
of movers is proportional to the number of individuals per group with a
factor � (i.e. m = �n with � > 0 for all G). We have:

1

GT
trV

�b�� = 1

45

�2

� (1� �)
G4

N
+ o

�
G4

N

�
The number of individuals must converge at a rate at least equal to G4+�,
� > 0, for assumption A5 to hold. This rate is far more important than
in case 1. One could argue that the multiplying constant of the leading
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term is far larger in case 1 than in case 2, especially when the migration
intensity is small. However, for instance when � = 10%, the leading term
is more important in case 1 only when G < 10 whereas the reverse is true
for some higher G.

In conclusion, these two cases suggest that Assumption A5 should be veri�ed
when G and N tend to in�nity with N reasonably higher than G if the mobility
pattern allows all groups to be well interconnected by �ows of movers. A deeper
insight of the link between the inter-group mobility pattern and the estimators
is given in next section with Monte-Carlo simulations.

7 Monte Carlo results

7.1 Simulations with an exogenous mobility pattern

In this section, we conduct some simulations to assess how the inter-group mo-
bility pattern a¤ects the accuracy of the estimators. We also compute the bias
on standard errors that the two-stage method allows to avoid compared to a
direct estimation of the model that does not take into account aggregate error
terms. For simplicity, we restrict the analysis to the setting given in section 2
where error terms are iid.
We focus on mobility patterns in which individuals move at most once to

another group during the T years. As in previous section, we suppose that N
is proportional to G, and that individuals are equally distributed across groups.
Each group contains n = N=G individuals and has the same number of out-
movers in each year, noted m. We impose the restriction n > mT so that there
are enough individuals in each group for moves to occur in all years. The out-
movers go to d destinations, d being the same for all groups, with d < G.
The mobility process is the following: in year 1, all individuals are a¤ected

to a group of origin. Then, md individuals move from each group g to one of
the next d groups between years 1 and 2 (m being supposed to be proportional
to d). Once the individuals have moved, they stay in their group of destination
until the end of the period. The process is renewed for each next pair of years.
We now describe the simulation procedure. We consider that there exist

only two aggregate variables: the vector one accounting for the constant and
another variable whose values are drawn independently in a uniform law [�1; 1].
Its coe¢ cient is �xed to 1. We draw the group and individual error terms in
some centered normal laws with variances equal to 1 and 15, respectively.12

For Assumption A3 to be veri�ed, the two types of error terms must be drawn
independently. However, we will sometimes allow for a correlation � between
them to test the robustness of the results to a misspeci�cation of the model.
We then construct some group-year �xed e¤ects as the sum of the e¤ect of

12The relative order of magnitude of the parameters are �xed according to the empirical re-
sults obtained by Combes, Duranton and Gobillon (2003) on the e¤ect of density on individual
wages.
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aggregate explanatory variables and the group error terms. The value of the
constant derives from the normalization to zero of the �rst group �xed e¤ect in
the �rst year .
We proceed to 1000 simulations of the model for di¤erent numbers of groups

and di¤erent mobility patterns. We report the median and mean estimated vari-
ance of individual and group error terms. We assess the importance of the cor-

rective term 1
GT�K tr

h
MZ

bV (b� j�)i for the median estimated variance of group
error terms by computing its ratio with the variance. We then report the mean
estimator of the aggregate variable coe¢ cient when OLS and FGLS are used, as
well as the median estimator and its standard error, the median standard error,
the root of the mean estimated variance and the RMSE. We also give for the di-
rect within estimation of the model: the mean estimator, the median estimator
and its standard error uncorrected for the existence of group error terms, the
uncorrected median standard error, the uncorrected root of the mean estimated
variance and the RMSE. Results are reported in Table 2.
We now comment the results for G = 50 groups when N = 10000 and

T = 2, for di¤erent mobility patterns and correlations between individual and
group error terms.
We �rst consider the benchmark case in column (1) for the mobility pattern

in which 100 individuals in each group move to the 5 next groups (20 movers per
group). We �nd that the corrective term used to compute the median variance
is quite important as it constitutes 25% of this variance. The variance of group
error terms and the coe¢ cients of the explanatory variable are estimated with a
reasonable accuracy, there RMSE being nearly 0:20. We can also note that the
median standard error computed when the model is estimated directly by OLS
is 2:5 times lower than its RMSE (0:07 against 0:20). This arises from the e¤ect
described by Moulton (1990): when the aggregate error terms are not taken into
account in the computation of standard errors, the latter can be highly biased.
We then change the mobility pattern, allowing for the migration of 100

individuals to the next group only. The estimates are reported in column (2).
The variance of group error terms is estimated with a very bad accuracy and its
RMSE is huge (1:56). In 28:4% of the simulations, the estimated variance is
even negative. The corrective term is very important as it accounts for 81% of
the median estimated variance. These results are in line with the analysis of case
2 in the previous section. However, the di¤erent estimators of the explanatory
variable coe¢ cient still perform well. The RMSE is very similar to the previous
case for the direct within estimation (0:22) and is slightly higher for the two-
stage OLS (0:33).
We then focus on the mobility pattern in which there exists a high number

of destinations, with two individuals moving to each of the next 49 groups. Re-
sults are reported in column (3). In that case, the variance of group error terms
is estimated with more accuracy than in the benchmark case, the RMSE de-
creasing from 0:23 to 0:17. The corrective term is also less important, as it now
constitutes only 16:7% of the median estimated variance. However, the coe¢ -
cient of the explanatory variable is estimated with a similar accuracy whatever
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estimation method is used.
We then �misspecify� the model, allowing for a correlation of 0:2 between

the individual and group error terms (see column 4). The estimator of the
group variance is now biased, the mean value (3:1) being far above one. This
is not surprising as the unbiasedness of this estimator is obtained only when
the individual and group error terms are independent (see Proof of Property
1). However, as expected (see Property 2), the direct within estimator and the
two-stage OLS estimator are still unbiased. The FGLS estimator also behaves
nicely as its value is only slightly biased. Finally, the accuracy of the parameter
estimates is less good than in the benchmark case. When the correlation between
error terms increases to 0:5 (column 5), the mean estimated variance of group
error terms goes up even more, taking the value 8:7, and is thus very biased.
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Table 2: Simulation results when the mobility process is exogenous

Model (1) Model (2) Model (3) Model (4) Model (5)
Parameters
S 1000 1000 1000 1000 1000
Variance of individual error term (κ2) 15 15 15 15 15
Variance of group error term (σ2) 1 1 1 1 1
Group variable coefficient (γ) 1 1 1 1 1
Number of groups (Z) 50 50 50 50 50
Number of individuals (N) 10000 10000 10000 10000 10000
Number of periods (T) 2 2 2 2 2
Number of destinations (ZM) 5 1 50 5 5
Number of movers per group (NM) 20 100 2 20 20
Correlation between error terms (ρ) 0 0 0 0.2 0.5
Simulation results
Estimated variance of individual error terms ( 2̂κ )
Mean estimator 14.9929 14.9917 15.0011 14.4057 11.2370

 Median estimator 14.9923 14.9888 15.0077 14.4006 11.2426
Standard error across S 0.2115 0.2105 0.2151 0.2162 0.1604
RMSE 0.2115 0.2106 0.2150 0.6323 3.7664
Estimated variance of group error terms ( 2σ̂ )
Mean estimator 0.9881 1.0257 1.0054 3.1457 8.6580
Median estimator 0.9671 0.5773 0.9911 3.1113 8.5951
Correction (%) 25.8224 81.3729 16.6914 9.4320 2.8494
Standard error across S 0.2203 1.6632 0.1810 0.5328 1.2627
RMSE 0.2205 1.6625 0.1810 2.2108 7.7613
Number of negative values 0 296 0 0 0
Two­stage OLS estimator of group variable coefficient ( OLSγ̂ )
Mean estimator 0.9990 1.0177 0.9954 1.0120 0.9964
Median estimator 0.9971 1.0195 0.9895 1.0168 1.0069
Its uncorrected standard error 0.1862 0.4167 0.1796 0.4020 0.4915
Its corrected standard error 0.1870 0.3362 0.1787 0.4009 0.4886
Mean uncorrected standard error 0.2014 0.3289 0.1922 0.3249 0.5219
Mean corrected standard error 0.2017 0.3261 0.1922 0.3248 0.5221
Median uncorrected standard error 0.1998 0.3089 0.1903 0.3233 0.5167
Median corrected standard error 0.1999 0.3067 0.1898 0.3230 0.5173
RMSE 0.2018 0.3269 0.2005 0.3262 0.5150
Two­stage FGLS estimator of group variable coefficient ( FGLSγ̂ )
Mean estimator 0.9991 1.1760 0.9953 1.0119 0.9971
Median estimator 0.9966 0.9832 0.9912 1.0150 1.0085
Its standard error 0.2237 0.2598 0.1780 0.3636 0.4702
Mean standard error 0.1922 0.1973 0.1915 0.3212 0.5211
Median standard error 0.1901 0.1671 0.1891 0.3196 0.5163
RMSE 0.1913 6.2278 0.2005 0.3244 0.5144
Direct within estimator of group variable coefficient in one stage only ( DWγ̂ )
Mean estimator 1.0012 1.0047 0.9941 1.0124 1.0080
Median estimator 1.0044 0.9897 0.9942 1.0077 1.0046
Its standard error 0.0653 0.0700 0.0704 0.0786 0.0759
Mean standard error 0.0698 0.0698 0.0698 0.0730 0.0777
Median standard error 0.0694 0.0694 0.0696 0.0725 0.0772
RMSE 0.2046 0.2175 0.2207 0.3580 0.5872
Mean estimator 1.0012 1.0047 0.9941 1.0124 1.0080
By definition,  the standard error across S differs  from the RMSE  for a given estimator only because the empirical mean  is used
instead of the true expectation.
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7.2 Simulations with an endogenous mobility pattern

We now try to assess the bias in the estimates when the mobility process is en-
dogenous. For that purpose, we conduct simulations in which the group choice
of individuals at each date is taken on the basis of the (conditional) expected
outcome as described in Section 4 and an observed group-speci�c individual ran-
dom error term �i;g;t (hereafter called choice error term to avoid some confusion
with the error terms included in the outcome equations):

Case 1: g (i; t) = argmax
g

E�i;g;t;�g;t
�
yi;g;t + �i;g;t

�
Case 2: g (i; t) = argmax

g
E�i;g;t

�
yi;g;t + �i;g;t

�
Case 3: g (i; t) = argmax

g
E�g;t

�
yi;g;t + �i;g;t

�
Case 4: g (i; t) = argmax

g

�
yi;g;t + �i;g;t

�
with yi;g;t = �+ zg;t
 + �g;t + �i;g;t.

The inclusion of the choice error terms is necessary to obtain group �xed
e¤ects that are identi�ed when the model is too deterministic (i.e. when the
group choice is made conditionally on �i;g;t). In many cases these error terms
have an economic meaning. For instance, in the case of migrations made on the
basis of expected outcome, they can represent the individual-speci�c e¤ect of
local amenities that may a¤ect the migration choice. The law of the error terms
in the outcome equations and the parameters are chosen to be similar to those
in the benchmark case when the mobility pattern is exogenous: �i;g;t and �g;t
are drawn independently in centered normal laws such that V

�
�i;g;t

�
= 15 and

V
�
�g;t
�
= 1; zg;t is drawn in a [�1; 1] uniform law and its coe¢ cient is 
 = 1.

We also make some iid draws of �i;g;t in a normal law with variance 15. In some
simulations, we will increase this variance to assess how estimates change when
the outcome has a less important role in the choice process.
The estimation results of the outcome equation are reported in Table 3.

Our purpose here is to assess the bias in the estimates depending on which
error terms (individual or aggregate) are observed by the individuals. In the
benchmark case when the outcome shocks are unobserved (case 1, column 1),
mobility is exogenous. Thus, the estimated variances of error terms as well as
the estimated coe¢ cient of the group variable are unbiased as in the previous
subsection. When the group error terms only are observed (case 2, column 2),
the two-stage OLS estimator, the variance of group error terms and the variance
of individual error terms are still unbiased as shown in section 5. However, the
two-stage FGLS estimator and the direct within estimator exhibit a bias of
respectively 6% and 5%. There biases are quite small because the variance of
the group error terms is also small.
When the individual error terms are observed but not the group error terms

(case 3, column 3), all the estimators are biased except the estimated variance
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of group error terms that seems to be unbiased.13 As we �xed the variance of
the individual error terms such that they are the main driver of the outcome
and a major determinant of the group choice process, the biases are very large.
The estimated variance of individual error terms, as well as the estimated co-
e¢ cient of the group variable, are biased by 40%. Results obtained when both
the individual and group error terms are observed (case 4, column 4) turn to be
similar except that the estimated variance of group error terms is now biased by
65%. We �nally examine for case 4, how biases decrease when the outcome has
a less important impact in the choice process. For that purpose, we increase the
variance of choice error terms. When the variance goes up from 15 to 75 (column
5), the bias on the estimated coe¢ cient of the group variable reduces from 40%
to 15%. The bias on the estimated variance of group error terms reduces from
65% to 25%. When the variance reaches 150 (column 6), there is a 8% bias only
on the estimated coe¢ cient of the group variable whereas there is still a 15%
bias on the estimated variance of group error terms.

13As explained in Section 3, the estimated variance of group error terms should be bi-
ased. However, the bias is numerically negligible here. This arises from the fact that only

tr
h
MZ

bV (b� j�)i is biased in formula (4). Note however that we obtained sometimes a very
small detectable bias when we conducted some other simulations corresponding to di¤erent
mobility patterns of individuals.
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Table 3: Simulation results when the mobility process is endogenous

Model (1) Model (2) Model (3) Model (4) Model (5) Model (6)
Parameters
Mobility scheme 1 2 3 4 4 4
S 1000 1000 1000 1000 1000 1000
Variance of idiosyncratic term 15 15 15 15 15 15
Variance of individual error term (κ2) 15 15 15 15 75 150
Variance of group error term (σ2) 1 1 1 1 1 1
Group variable coefficient (γ) 1 1 1 1 1 1
Number of groups (Z) 50 50 50 50 50 50
Number of individuals (N) 10000 10000 10000 10000 10000 10000
Number of periods (T) 2 2 2 2 2 2
Correlation between error terms (ρ) 0 0 0 0 0 0
Simulation results
Mobility rate 98.01% 98.00% 98.01% 98.00% 98.00% 97.99%
Estimated variance of individual error terms ( 2̂κ )
Mean estimator 15.0037 15.0050 9.1288 9.1758 13.0425 13.9261
Median estimator 15.0129 15.0005 9.1319 9.1776 13.0415 13.9251
Standard error across S 0.2141 0.2168 0.1286 0.1244 0.1897 0.1936
RMSE 0.2141 0.2167 5.8726 5.8255 1.9667 1.0912
Estimated variance of group error terms ( 2σ̂ )
Mean estimator 1.0036 1.0049 1.0020 0.3629 0.7586 0.8560
Median estimator 0.9914 0.9857 0.9896 0.3559 0.7548 0.8482
Correction (%) 14.5822 20.0230 8.9258 24.6683 15.8184 14.6906
Standard error across S 0.1707 0.2001 0.1632 0.0697 0.1309 0.1414
RMSE 0.1706 0.2001 0.1631 0.6409 0.2746 0.2018
Number of negative values 0 0 0 0 0 0
Two­stage OLS estimator of group variable coefficient ( OLSγ̂ )
Mean estimator 1.0059 0.9971 0.6077 0.6080 0.8676 0.9208
Median estimator 1.0095 0.9972 0.6051 0.6046 0.8632 0.9239
Its uncorrected standard error 0.1719 0.2235 0.1925 0.0990 0.1459 0.1578
Its corrected standard error 0.1721 0.2244 0.1924 0.0986 0.1459 0.1574
Mean uncorrected standard error 0.1892 0.1956 0.1835 0.1210 0.1658 0.1748
Mean corrected standard error 0.1900 0.1967 0.1837 0.1214 0.1659 0.1748
Median uncorrected standard error 0.1875 0.1931 0.1819 0.1202 0.1651 0.1735
Median corrected standard error 0.1882 0.1944 0.1821 0.1206 0.1652 0.1737
RMSE 0.1919 0.1994 0.4351 0.4093 0.2098 0.1962
Two­stage FGLS estimator of group variable coefficient ( FGLSγ̂ )

Mean estimator 1.0056 0.9434 0.6078 0.5890 0.8599 0.9170
Median estimator 1.0090 0.9382 0.6057 0.5880 0.8553 0.9190
Its standard error 0.1990 0.1679 0.2105 0.1366 0.1646 0.1649
Mean standard error 0.1897 0.1943 0.1837 0.1204 0.1658 0.1747
Median standard error 0.1880 0.1919 0.1820 0.1196 0.1650 0.1735
RMSE 0.1920 0.1980 0.4349 0.4268 0.2136 0.1971
Direct within estimator of group variable coefficient in one stage only ( DWγ̂ )
Mean estimator 1.0032 0.9507 0.6116 0.6002 0.8600 0.9192
Median estimator 1.0007 0.9533 0.6107 0.5988 0.8610 0.9191
Its standard error 0.0658 0.0709 0.0586 0.0568 0.0684 0.0650
Mean standard error 0.0722 0.0719 0.0564 0.0547 0.0650 0.0669
Median standard error 0.0720 0.0716 0.0562 0.0543 0.0649 0.0666
RMSE 0.2011 0.2493 0.4339 0.4215 0.2203 0.2012
By definition, the standard error across S differs from the RMSE for a given estimator only because the empirical mean is used instead of the
true expectation.

8 Conclusion

In this paper, we study the e¤ect of aggregate variables on an individual outcome
in linear panel models with individual �xed e¤ects. We focus on cases where
individuals are mobile and can change group across time. It has been shown in
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the literature that standard errors of aggregate e¤ects can be highly biased if
unobserved heterogeneity at the aggregate level is omitted from the econometric
speci�cation. Many related papers recommand to take aggregate unobservables
into account through iid random terms and to use a FGLS approach to estimate
the model. However, they deal with cross-section models only and their approach
cannot be adapted to panel models where individuals are mobile.
Consequently, we explain how an alternative two-stage method can be imple-

mented to solve the issue. In �rst stage, the individual outcome is speci�ed as a
function of the individual variables, some group-year �xed e¤ects and the indi-
vidual �xed e¤ects. This speci�cation is estimated after the equation has been
projected in the within-individual dimension. In second stage, the estimated
group-year �xed e¤ects are regressed on the aggregate variables.
The estimates obtained for the coe¢ cients of individual and aggregate ex-

planatory variables are unbiased. They are also consistent under reasonable
assumptions. Moreover, we are able to construct an unbiased and consistent
estimator of the variance of aggregate error terms. This estimator is used to
compute some unbiased and consistent standard errors for the estimated coe¢ -
cients of aggregate variables.
The two-stage method has many advantages. The estimator of the variance of

group error terms is easy to compute. It is possible to conduct a variance analysis
at the aggregate level in second stage. Morover, the estimation procedure can
be adapted to take into account heteroskedasticity and/or autocorrelation of
individual and group error terms, as well as many endogeneity issues.
However, the method cannot be extended easily to cope with some selection

e¤ects in the group choice process of individuals. Indeed, it would be tempting
to correct for the selection bias using multiple-choice models. Unfortunately,
the related approches in the literature are designed for cross-section data and
extensions to panel data are not straightforward. The correction of the selection
bias in linear panel models with individual �xed e¤ects constitutes a topic for
further research. Another limit of the two-stage method is that it becomes
burdensome or even unapplicable when the number of groups is large.
Finally, note that the two-stage method may be used to estimate nonlinear

models (like duration models). In that case, the �rst-stage equation is non linear
and the second-stage equation is linear. However, the results on unbiasedness do
not hold at �nite distance and the assumptions made to show the large sample
properties of the estimators have to be modi�ed. The use of the two-stage
method to measure the e¤ect of aggregate variables on the individual outcome
in a nonlinear framework is thus a topic for further research.
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9 Appendix

9.1 Appendix A: di¤erent assumptions on mobility and
individual e¤ects

9.1.1 The two-stage method when mobility is imperfect

We explain brie�y how to apply the two-stage method when mobility is imperfect
and one restriction on group-year �xed e¤ects is not enough to identify the
model.

We �rst consider the setting where individuals are immobile. In the �rst
stage of the method, only the within-group variation of group-year �xed ef-
fects can be identi�ed. Thus, we need to impose G identifying restrictions:
one for each group. Suppose for instance that for all g, we have: �g;1 = 0.
In second stage, the most convenient way to cope with the identifying restric-
tions is to project equation (3) in the within-group dimension. It makes the
unidenti�ed inter-group variations disappear.14 We introduce FG the matrix
corresponding to group dummies and MFG the within-group projector. The
second-stage equation rewrites MFG

b� = MFGZ
 +MFG� +MFG	, where the
uncertainty on group-year �xed e¤ects is rede�ned such that 	 = (	01; :::;	

0
G)

0

with 	g = (0;	g;2; :::;	g;T )
0: After estimating this equation, it is possible to

construct an estimator of the variance of group error terms similar to (4):

b�2 = 1

tr
�
MFGMMFG

Z

� � \MFGZ (� +	)
0 \MFGZ (� +	)� tr

h
MFGMMFG

Z
bV (b� j�)i�
(16)

where b�g;1 = 0 for all g and bV (b� j�) is constructed from the �rst-stage results.
When FG and Z are orthogonal, this formula simplies as MFGZ = Z and

tr
�
MFGMMFG

Z

�
= GT �G�K.

We now turn to the setting where individuals are mobile but groups are
imperfectly interconnected by movers. Consider for instance the case where
groups are properly interconnected within two subsets, but these subsets are not
connected to each other. We denote fg1; :::; gS1g the groups in the �rst subset
and fgS1+1; :::; gGg the groups in the second subset. In the �rst stage of the
method, two identifying restrictions (one for each subset) have to be imposed,
say: �g1;1 = 0 and �gS1+1;1 = 0. In second stage, it is possible to cope with the
identifying restrictions by projecting the model in the within-subset dimension.
Denote F2 the matrix corresponding to subset dummies and MF2 the within-
subset projector. The second-stage equation rewritesMF2

b� =MF2Z
+MF2�+
MF2	, where the uncertainty on group-year �xed e¤ects is rede�ned such that
	 = (	0S1 ;	

0
S2
)0, with 	S1 = (0; g2; :::; gS1)

0 and 	S1 = (0; gS1+2; :::; gG)
0
: An

14Note that coe¢ cients related to time-varying explanatory variables are not identi�ed.
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estimator of the variance of group error terms can be obtained by replacing FG
with F2 in equation (16).
It is possible to generalize this procedure to any number of subsets. In practice,
the subsets are de�ned by examining the �ows of stayers and movers across
time.
Note that a polar case is obtained when the number of subsets is G. Then,
all individuals are immobile and we are in the �rst setting analyzed in this
appendix.
Another polar case is obtained when the number of subsets is 1. Then, all groups
are interconnected. There is a slight variation here compared to how the two-
stage method was applied in section 3. Here, the second-stage equation (3) has
been centered to make the constant disappear.

9.1.2 The two-stage method when individual e¤ects are random

The two-stage estimation method can also be implemented when individual
e¤ects are random (and not �xed). In that case, there is no need to impose
any identifying restriction on group-year �xed e¤ects (like �1;1 = 0) provided
that the constant is omitted in �rst stage. Equation (2) is a random coe¢ cients
panel model for which it is possible to apply general least squares (for instance,
see Wooldridge, 2002). The GLS estimators of group-year �xed e¤ects are used
as dependent variables in second stage. The GLS estimator of 
 derived from
model (3) is then the GLS estimator of 
 for model (1) according to Amemiya
(1978)�s results. Interestingly, note that we obtain a FGLS estimator for model
(1) replacing �2 by b�2 (its �rst-stage estimator), and �2 by b�2.
If there is no mobility, the two-stage method is not necessary when individual

e¤ects are random. It is possible to construct a FGLS estimator of coe¢ cients
for model (1). Indeed, some adequate projections of model (1) allow to recover
the variance of all random terms. More speci�cally, projecting the model in the
within-individual dimension makes individual random e¤ects and group error
terms disappear. Thus, the variance of individual shocks can be recovered. Then,
projecting model (1) in the between-individual dimension leads to a simple two-
level model that has been studied extensively in the literature (see Wooldridge,
2003). Projecting this two-level model in the within-group and between-group
dimensions allows to recover the variance of individual random e¤ects and group
error terms.

9.2 Appendix B: properties of estimators

Proof of Property 1:

We have: �
\� +	

�0 �
\� +	

�
= �0MZ� +	

0MZ� + �
0MZ	+	

0MZ	 (17)

We then write:

E (�0MZ�) = Etr [MZE (��
0 jZ )] = (GT �K)�2 (18)
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We note B =
�
0;MHF (F

0MHF )
�1
�0
the matrix such that 	 = B". From A3,

we obtain:
E (	0MZ�) = trE [B

0MZE (�"
0 j�)] = 0 (19)

Similarly, we get E (�0MZ	) = 0. We also have:

E (	0MZ	) = E [tr (MZE (		
0 j�))] = trE

h
MZV

�b� j��i (20)

Moreover,

E
h
tr
h
MZ

bV �b� j��ii = E
h
tr
h
MZE

hbV �b� j�� j�iii
= trE

h
MZV

�b� j��i (21)

We �nally show the property. �

Proof of Property 2:

We will need the following Chebychev�s weak law of large numbers for tri-
angular arrays to show consistency properties (see Borovkov, p153):

Theorem A: Let ' (�) : N ! N be a strictly increasing function; &n;i, i =
1; :::; ' (n), n 2 N , forms a triangular array of 1 � 1 independent random
variables with E (&n;i) = 0 and E

�
&2n;i
�
= �2n;i < +1. Denote �n =

nP
i=1

&n;i and

suppose that the following condition, noted C1, holds:

V

�
1

' (n)
�'(n)

�
=

1

[' (n)]
2

'(n)X
i=1

�2n;i �!
n�!+1

0 (22)

Then, we have: 1
'(n)�'(n)

P�!
n�!+1

0.

We will also use the two following lemmas:15

Lemma 1: Consider two matrices X and Y . tr (XY ) 6
p
tr (XX 0)

p
tr (Y Y 0).

Lemma 2: Consider 
 a symmetric positive de�nite matrix. tr
�

2
�
6 [tr (
)]2.

We now prove Property 2. We have:�
\� +	

�0 �
\� +	

�
= �0MZ� +	

0MZ� + �
0MZ	+	

0MZ	 (23)

We can write:
�0MZ�

GT
=
�0�

GT
� 1

GT
tr (PZ��

0) (24)

15The proof of Lemma 1 uses the Cauchy-Schwartz inequality. The proof of Lemma 2 uses
the fact that for any given positive de�nite matrix v = (vi;j), we have: jvi;j j 6 pvi;ipvj;j .
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As the shocks �g;t are iid with fourth moment Q, condition C1 is veri�ed by the
�rst right-hand-side term. Consequently, this term tends to �2 when G tends
to in�nity according to the LGN given by Theorem A. It is possible to check
that C1 is also veri�ed for the second right-hand-side term as:

V

�
1

GT
tr (PZ��

0)

�
6 1

(GT )
2

�
Q+ 5�4

�
K (25)

Consequently, we can apply theorem A again. Finally, we get: �
0MZ�
GT

P! �2.

We also have:

	0MZ�

GT
=
"0B0�

GT
� "

0B0PZ�

GT
= tr

��
B0

GT

�
�"0
�
� tr

��
B0PZ
GT

�
�"0
�

(26)

Both quantities on the right-hand side can be rewritten as weighted sums of the
iid centered residuals "i;t�g;t. We want to apply the LGN to both these sums.
We check that condition C1 is veri�ed. We have:

V

�
tr

��
B0

GT

�
�"0
��
= E

�
tr

��
B0

GT

�
�"0
��2

=
�2�2

(GT )
2E
h
tr (F 0MHF )

�1
i

Using A5, this term tends to zero when G tends to in�nity. Consequently, con-
dition C1 is veri�ed for the �rst sum in (26). It is possible to show the same
way that:

V

�
tr

��
B0PZ
GT

�
�"0
��
=

�2�2

(GT )
2E [tr (PZBB

0)] (27)

Using Lemma 1 and 2, we get:

tr (PZBB
0) 6

q
tr (P 2Z)

q
[tr (BB0)]

2 6
p
Ktr (BB0) (28)

Thus,

V

�
tr

��
B0PZ
GT

�
�"0
��
6 �2�2

(GT )
2

p
KE

h
tr (F 0MHF )

�1
i

(29)

and condition C1 is veri�ed for the second sum in (26). Applying Theorem A
twice, we obtain:

	0MZ�

GT

P! Etr

��
B0

GT

�
�"0
�
+ Etr

��
B0PZ
GT

�
�"0
�
= 0 (30)

Finally, we have:

	0MZ	

GT
� 1

GT
tr
h
MZ

bV (b� j�)i =
1

GT

h
	0MZ	� tr

h
MZV (b� j�)ii (31)

+
1

GT
tr
h
MZ

h
V (b� j�)� bV (b� j�)ii(32)
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We can write:

1

GT

h
	0MZ	� tr

h
MZV (b� j�)ii = tr [MZ (B""

0B0)]� tr [MZE (B""
0B0 j�)]

= tr [B0MZB [""
0 � E (""0 j�)]] (33)

We want to apply the LGN given by Theorem A. For that purpose, we check
that condition C1 is veri�ed. Using the fact that shocks "i;t are iid with fourth
moment R, we obtain:

V

�
1

GT
tr [B0MZB [""

0 � E (""0 j�)]]
�
6 R+ �4

(GT )
2 trE [B

0MZBB
0MZB] (34)

Then, we get after using two times Lemma 1 and 2:

V

�
1

GT
tr [B0MZB [""

0 � E (""0 j�)]]
�
6 R+ �4

(GT )
2

�
1 +

p
K
�2
E
h
tr (F 0MHF )

�1
i2

(35)
Using Assumption A5, this term tends to zero when G tends to in�nity. Apply-
ing Theorem A, we obtain:

1

GT

h
	0MZ	� tr

h
MZV (b� j�)ii P! 0 (36)

Under Assumption A1, we get bV (b� j�) = b�2
�2V (

b� j�) from the �rst-stage

within estimation, with b�2 = 1

tr
h
M(MHF)

i"0M(MHF )". We show that: b�2 P!
G�!+1

�2. Indeed, we have: (N �G)T 6 tr
�
M(MHF )

�
6 NT . Using A4, we obtain:

1
NT tr

�
M(MHF )

� P!
G�!+1

1. Finally, it is easy to show that 1
NT "

0M(MHF )"
P!

G�!+1

�2 with a proof similar to the one used to show that �
0MZ�
GT

P! �2. Using lemma
1 and 2, we then get:

1

GT
tr
h
MZ

h
V (b� j�)� bV (b� j�)ii =

1

(GT )�2

�b�2 � �2� tr hMZV (b� j�)i (37)
6 1 +

p
K

GT

���b�2 � �2��� tr h(F 0MHF )
�1
i
P! 0(38)

and we obtain: b�2 P!
G�!+1

�2. �

Proof of Property 4:

We have b
OLS = 
 + (Z 0Z)
�1
Z 0� + (Z 0Z)

�1
Z 0B". Z0Z

GT

P!
G!+1

Q0 a positive

de�nite matrix, the inverse is a continous function, and Z0�
GT

P!
G!+1

0. According

to Theorem A, we get: (Z 0Z)�1 Z 0� P! Q�10 :0 = 0. Moreover, each element of

31



1
GT Z

0B" is a weighted sum of the iid centered residuals "i;t. We want to apply
Theorem A to each of these sums. Thus, we check that condition C1 is veri�ed.
Using Lemma 1 and 2, as well as A6a, we obtain:

trV

�
1

GT
Z 0B"

�
=

�2

(GT )
2 trE

�
Z 0
�

0

(F 0MHF )
�1

�
Z

�
(39)

6 �2

(GT )
2E

"p
tr (ZZ 0ZZ 0)

rh
tr (F 0MHF )

�1
i2#

(40)

6 K�21
GT

�2trE
h
(F 0MHF )

�1
i

(41)

Using A6a, this term tends to zero when G tends to in�nity. Thus the variance

of each element of 1
GT Z

0B" tends to zero. Consequently, b
OLS P!
G!+1


.

We can write that b
GLS = 
 + �Z0
�1ZGT

��1
1
GT Z

0
�1 (� +B"). Each element

of 1
GT Z

0
�1 (� +B") is a weighted sum of the independent centered residuals
"i;t and �g;t. We want to apply Theorem A to each of these sums. Thus, we
check that condition C1 is veri�ed. Using Lemma 1 and 2, as well as A6b, we
obtain:

trV

�
1

GT
Z 0
�1 (� +	)

�
=

1

(GT )
2 trE

�
Z 0
�1Z

�
6 1

(GT )
2E

�p
tr (ZZ 0ZZ 0)

q
tr (
�1)

2

�
6 K�2

GT
Etr

�

�1

�
(42)

Using A6b, this term tends to zero when G tends to in�nity. Thus the variance of

each element of 1
GT Z

0
�1 (� +B") tends to zero. Consequently, b
GLS P!
G!+1


.

The same kind of argument can be applied using A6c to show that b
FGLS P!
G!+1


. �

Proof of Property 5:

We �rst prove the part of Property 5 related to the OLS estimator. We need to
use a central limit theorem (CLT) for triangular arrays in the multivariate case
that is given by Borovkov (1998, Theorem 11A, p174):

Theorem B. Let ' (�) : N ! N be a strictly increasing function, and let Xn;i,
i = 1; :::; ' (n), n 2 N , form a triangular array of independent vectors of random
variables with E (Xn;i) = 0 and E (kXn;ik) < +1, where k:k is the Euclidean
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norm. Denote Xn =
'(n)P
i=1

Xn;i, �n;i = E
�
Xn;iX

0
n;i

�
and �n =

'(n)P
i=1

�n;i. Suppose

that the Lyapunov condition holds:

'(n)X
i=1

E
�
kXn;ik2+�

�
�!

n�!+1
0 for some � > 0 (43)

If �n �!
n�!+1

� a positive de�nite matrix, then Xn
L!

n!+1
N (0;�).

To prove the Property 5, we can �rst write that:

p
GT (b
OLS � 
) = �Z 0ZGT

��1�
Z 0�p
GT

+�"

�
(44)

with � = 1p
GT
Z 0B. Note that � depends on G even if it is not stated here.

We want to apply Theorem B with ' (�) de�ned such as ' (G) = GT + Tf (G)
where f (�) veri�es N = f (G) (see Assumption A4 ) and � = 2 to show that:

Z 0�p
GT

+�"
L!

G!+1
N
�
0; �2Q0 + �

2Q1
�

(45)

Consequently, we check that all requirements are veri�ed.

We �rst introduce the K�1 vectors xg;t =
Z0g;t�g;tp

GT
and yi;t = �i;t"i;t where Zg;t

is the element of Z corresponding to group g in year t; �i;t is the element of �
corresponding to individual i in year t.
We have E (xg;t) = E (yi;t) = 0: Moreover, for kxg;tk > 1, we get kxg;tk 6
kxg;tk2 = �2g;t

Zg;tZ
0
g;t

GT . The expectation of the right-hand side quantity ex-
ists as Z has a bounded support. Thus, we have E (kxg;tk) < +1. Moreover,
for kyi;tk > 1, we have kyi;tk 6 kyi;tk2 6 "2i;t�

0
i;t�i;t. As all elements of Z

are bounded by �1 and all the elements of `: jBj are bounded by �1, we get:
�0i;t�i;t 6

K�21�
2
1

GT . Consequently, E (kyi;tk) < +1. Finally, we have:

X
g;t

E
�
kxg;tk4

�
+
X
i;t

E
�
kyi;tk4

�
= Q

X
g;t

E

"�
Zg;tZ

0
g;t

GT

�2#
+R
X
i;t

E
h�
�0i;t�i;t

�2i
(46)

Moreover, we have (using the inequality given by (39)):X
i;t

E
�
kyi;tk4

�
6 K�21�

2
1

GT

X
i;t

E
�
�0i;t�i;t

�
6 K�21�

2
1

(GT )
2E [tr (Z

0BB0Z)]

6 K2�41�
2
1

GT
Etr

h
(F 0MHF )

�1
i

(47)
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The right-hand-side quantity tends to zero as G tends to in�nity according to

A6a. Moreover, as
���Zg;tZ0g;tGT

��� 6 K�21
GT , we have:

X
g;t

E

"�
Zg;tZ

0
g;t

GT

�2#
6 K2�41

GT
(48)

The right-hand-side quantity tends to zero as G tends to in�nity. Consequently,

we obtain:
P
g;t
E
�
kxg;tk4

�
+
P
i;t

E
�
kyi;tk4

�
�!

G�!+1
0 and the property is shown.

The central limit theorems for the GLS and FGLS estimators can by shown
similarly, noting that:

p
GT (b
GLS � 
) =

�
Z 0
�1Z

GT

��1�
1p
GT

Z 0
�1� +
1p
GT

Z 0
�1B"

�
(49)

p
GT (b
FGLS � 
) =

 
Z 0b
�1Z
GT

!�1�
1p
GT

Zb
�1� + 1p
GT

Z 0b
�1B"�(50)
The proofs are formally similar to the one used for the OLS estimator, rede�ning
in the GLS case: � = 1p

GT
Z 0
�1=2 and in the FGLS case: � = 1p

GT
Z 0b
�1=2.

�

9.3 Appendix C: details on the two particular cases

9.3.1 Case 1

The �rst-order conditions rewrite:

n�g;2 �
�
n� G

G� 1m
�
�g;1 �

m

G� 1
X
z

�z;1 = wg;2 (51)

n�g;1 �
�
n� G

G� 1m
�
�g;2 �

m

G� 1
X
z

�z;2 = wg;1 (52)

Summing equations (51) and (52), we obtain an expression for �g;2. Replacing
�g;2 by this expression in (52), we get:

n�g;1 �
�
n� G

G�1m
��

G�1
mG (wg;1 + wg;2) +

1
G

P
z

�
�z;1 + �z;2

�
� �g;1

�
� m
G�1

P
z
�z;2 = wg;1

(53)

Di¤erencing with respect to the equation for group 1 and using the fact that
�1;1 = 0, we obtain:

b�g;1 = 1

n

�

2� � 1 [� (wg;1 � w1;1) + (� � 1) (wg;2 � w1;2)] (54)
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with � = G�1
G

n
m .

We need the following equalities to compute the variance of group �xed e¤ects
in year 1:

cov (wg; wg+k;1) = 1fk=0gV (wg;1) = 1fk=0g2n�
2 (55)

cov (wg;2; wg+k;2) = 1fk=0gV (wg;2) = 1fk=0g2n�
2 (56)

cov (wg;1; wg+k;2) = �1fk=0g2 (n�m)�2 � 1fk 6=0g2
m

G� 1�
2 (57)

We then obtain:

V
�b�g;1� =

1

n2
�2�2

(2� � 1)2
�
�24n+ (� � 1)2 4n+ 2� (� � 1)

�
�4 (n�m) + 4m

G� 1

��
=

4�2

n

�3

2� � 1 (58)

We can study the evolution of this variance as a function of �. We de�ne:
k (�) = �3

2��1 . We have k
0 (�) = 4

(2��1)2 �
2 (4� � 3). As the value of � is above

G�1
G , the derivative of k is always positive for G > 3. In that case, the variance
of group �xed e¤ects in year 1 is minimum for m = n.

We now compute the variance of group �xed e¤ects in year 2. Using the
same line of arguments that leads to equation (54) in year 1, we obtain:

b�g;2 � b�1;2 = 1

n

�

2� � 1 [� (wg;2 � w1;2) + (� � 1) (wg;1 � w1;1)] (59)

Rewriting (52) for g = 1, we get:

b�1;2 � 1

�G

X
z

b�z;1 = 1

n
w1;2 (60)

Moreover using (54), we have:

X
z

b�z;1 = 1

n

�

2� � 1

"
�
X
z

(wz;1 � w1;1) + (� � 1)
X
z

(wz;2 � w1;2)
#

(61)

Thus:

b�1;2 = 1

n
w1;2+

1

nG

1

2� � 1

"
�
X
z

(wz;1 � w1;1) + (� � 1)
X
z

(wz;2 � w1;2)
#
(62)

Consequently with (59), we obtain:

b�g;2 =
1

n

�

2� � 1 [� (wg;2 � w1;2) + (� � 1) (wg;1 � w1;1)]

+
1

n
w1;2 +

1

nG

1

2� � 1

"
�
X
z

(wz;1 � w1;1) + (� � 1)
X
z

(wz;2 � w1;2)
#

(63)
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Using the formulas:

V

�
�
P
z
(wz;1 � w1;1) + (� � 1)

P
z
(wz;2 � w1;2)

�
= 2G (G� 1) (2� � 1)n�2

�
P
z
cov (w1;2; wz;1 � w1;1) + (� � 1)

P
z
cov (w1;2; wz;2 � w1;2) = �2n 2��1� �2

cov

"
� (wg;2 � w1;2) + (� � 1) (wg;1 � w1;1) ;

�
P
z
(wz;1 � w1;1) + (� � 1)

P
z
(wz;2 � w1;2)

#
= 2nG (��1)(2��1)

� �2

we �nally get:

V
�b�g;2� = V �b�g;1�� 2

nG
�2 +

4

n

� � 1
2� � 1�

2 (64)

We de�ne l (�) = ��1
2��1 . We have l0 (�) = 1

(2��1)2 > 0. Consequently, the
variance of group �xed e¤ects in year 2 is also minimum for m = n.

9.3.2 Case 2

The �rst-order conditions write:

n�g;2 �m�g�1;1 � (n�m)�g;1 = wg;2 (65)

n�g;1 �m�g+1;2 � (n�m)�g;2 = wg;1 (66)

Substituting the expression of group �xed e¤ects in year 2 given by (65) in (66),
it gives: �

�g+1;1 � �g;1
�
�
�
�g;1 � �g�1;1

�
= �wg;1 (67)

with wg;1 = 1
m(n�m) [nwg;1 +mwg+1;2 + (n�m)wg;2]. From this equation, we

get:

�g+1;1 � �g;1 = �2;1 �
gP
b=2

wb;1

=) �g;1 = (g � 1)�2;1 �
g�1P
c=2

cP
b=2

wb;1

, �g;1 = (g � 1)�2;1 �
g�1P
b=2

(g � b)wb;1

(68)

Using the �rst and last expressions for g = G, we obtain:

��G;1 = ��2;1 +
GX
b=2

wb;1 = (G� 1)�2;1 �
G�1X
b=2

(G� b)wb;1 (69)

It implies that:

�2;1 =
1

G

GX
b=2

(G� b+ 1)wb;1 (70)
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And �nally, we get:

b�g;1 =
g � 1
G

GX
b=2

(G� b+ 1)wb;1 �
g�1X
b=2

(g � b)wb;1 (71)

=
G� g + 1

G

g�2X
b=1

bwb+1;1 +
g � 1
G

G�1X
b=g�1

(G� b)wb+1;1 (72)

To compute the variance of this estimator, we need the following equalities:

cov (wg;1; wg+k;1) = 1fk=0gV (wg;1) = 1fk=0g2n�
2 (73)

cov (wg;2; wg+k;2) = 1fk=0gV (wg;2) = 1fk=0g2n�
2 (74)

cov (wg;1; wg+k;2) = �1fk=0g2 (n�m)�2 � 1fk=1g2m�2 (75)

Using these formulas, we obtain:

cov (wg;1; wg+k;1) =
2�2

m (n�m)
�
2n1fk=0g � 1fk=1g

�
(76)

We use expression (76) to get the variance of group �xed e¤ects in year 1:

G2
m (n�m)
4�2

V
�b�g;1� = 1

6
G (n� 1) (1 + 2h (g))h (g) + 1

2
Gh (g) (77)

with h (g) = (g � 1) (G� g + 1).

We now compute the variance of group �xed e¤ects in year 2. Using (65),
we get: b�g;2 = 1

n

h
wg;2 +mb�g�1;1 + (n�m) b�g;1i (78)

We have V (wg;2) = 2n�2. Moreover:

cov
�
wg;2; b�g;1� =

G� g + 1
G

g�2X
b=1

bcov (wg;2; wb+1;1) (79)

�g � 1
G

G�1X
b=g�1

(G� b) cov (wg;2; wb+1;1) (80)

For any b, it is possible to check that cov (wg;2; wb;1) = 0. Consequently, we get:

cov
�
wg;2; b�g�1;1� = cov �wg;2; b�g;1� = 0 (81)

37



Moreover, we have:

G2cov
�b�g�1;1; b�g;1� = (G� g + 1) (G� g + 2)

g�2X
b=1

g�3X
c=1

bccov (wb+1;1; wc+1;1)

+ (g � 1) (g � 2)
G�1X
b=g�1

G�1X
c=g�2

(G� b) (G� c) cov (wb+1;1; wc+1;1)

+ (G� g + 1) (g � 2)
g�2X
b=1

G�1X
c=g�2

b (G� c) cov (wb+1;1; wc+1;1)

+ (g � 1) (G� g + 2)
G�1X
b=g�1

g�3X
c=1

(G� c) bcov (wb+1;1; wc+1;1) (82)

We then get:

G2m (n�m)
2�2

cov
�b�g�1;1; b�g;1�

= (G� g + 1) (G� g + 2)
"
2n

g�3X
b=1

b2 � 2
g�4X
b=1

b (b+ 1)� (g � 2) (g � 3)
#

+(g � 1) (g � 2)
"
2n

G�g+1X
b=1

b2 � 2
G�g+1X
b=1

b (b� 1)� (G� g + 1) (G� g + 2)
#

+(G� g + 1) (g � 2)
�

2n (g � 2) (G� g + 2)
� (g � 3) (G� g + 2)� (g � 2) (G� g + 1)

�
+0 (83)

simplifying (83), we obtain:

G2m (n�m)
2�2

cov
�b�g�1;1; b�g;1� =

2

3
G (n� 1)h (g)h (g � 1) (84)

+
G

2
[h (g) + h (g � 1) + 1�G]

Using formulas (78), (81) and (84), we compute the variance of group �xed
e¤ects in year 2:

V
�b�g;2� = 4�2

Gn2

264
n�1

3m(n�m) [(n�m)h (g) +mh (g � 1)]
2

+ 1
2

n
m(n�m) [(n�m)h (g) +mh (g � 1)]

+ 1
6 (n� 1)

h
(n�m)2
m(n�m)h (g) +

m2

m(n�m)h (g � 1)
i
+ 1

2 (1�G)

375
(85)

To obtain the relative convergence rate of N and G for Assumption A5 to be
veri�ed, we need to compute the leading term of

P
g
h (g)

2 when G tends to
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in�nity. In fact, it is the leading term of:

G2
X
g

g2 +
X
g

g4 � 2G
X
g

g3 (86)

Taking the leading term of each sum, it gives: 1
3G

5 + 1
5G

5 � 1
2G

5 = 1
30G

5. It
is easy to check that the leading term is the same for

P
g
h (g � 1)h (g). Conse-

quently, the leading term of trV
�b�� writes: 1

45
nG3

m(n�m)�
2.
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